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ABSTRACT. In this paper, we have obtained weighted versions of Os-
trowski, Cebysev and Griiss type inequalities for conformable fractional
integrals which is given by Katugompola. By using the Katugampola
definition for conformable calculus, the present study confirms previous
findings and contributes additional evidence that provide the bounds for

more general functions.
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1. INTRODUCTION

In conjunction with the development of differential and integral equations
theory, integral inequalities which achieve explicit upper or lower bounds for
unknown functions have gained great importance in mathematics. For this pur-
pose a number of scientist have proposed numerous practical integral inequali-
ties. On of the well-known integral inequalities was introduced by Cebysev [4]
in 1882. Motivated by this inequality, scientist have found the answer many
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question in the academia such as probability, statistical problems, numerical
quadrature and transform theory. Then, in 1935, Griiss [6] introduced a prac-
tical and challenging inequality which provides an estimate of the difference
between the integral of the product of two functions and the product of their
integrals. In 1938, Ostrowski [15] was introduced an inequality associated with
his name. Then various investigators have proposed different kind of Ostrowski
type integral inequalities to achieve a variety of desired aims ([13],[14],[16],[18]).
Meanwhile a number of mathematicians were involved in finding a way to take
non-integer order of derivatives or integrals. As a result of these studies sev-
eral methods have been introduced to solve fractional systems. Some of the
most popular of these methods are Riemann-Liouville and Caputo definition
([5],[11],[12],[17]). Then Abdeljawad [1] and Khalil et. al. [10] defined the
limit-based conformable derivative which is another type of fractional deriva-
tive and integrations. In more recent times a new local, limit-based definition
of a conformable derivative has been introduced by Katugampola [9] in order
to overcome some of difficulties which were given in [9].

The object of the present investigation is to obtain certain weighted Ostrowski,
Cebysev and Griiss type integral inequalities involving the Katugampola con-
formable fractional integrals. The established results are a generalisation of
some existing integral inequalities in the previous published studies.

The remainder of this work is organized as follows: In Section 2, the con-
formable derivatives are summarised, along with the Katugampola conformable
fractional integrals type. Then weighted Ostrowski, Cebysev and Griiss type
integral inequalities for conformable fractional integral are presented in Sec-
tion 3, Section 4 and Section 5, respectively. Some conclusions and further
directions of research are discussed in Section 6.

2. PRELIMINARIES

In this section, we give some required properties of conformable fractional
integrals introduced in detail in ([1]-[3],[7]-[10]). In this study, we use the
Katugampola derivative formulation of conformable derivative of order for a €
(0,1] and t € [0, 00) given by

IGR R0 |
D" (£) (t) = lim LD (f)(0) = EmD” (£ (B, (21)

e—0 3 t—0

provided the limits exist (for detail see, [9]). If f is fully differentiable at ¢,
then
« e df
DY(f) () =t (1) (2.2)

A function f is a—differentiable at a point ¢ > 0 if the limit in (2.1) exists and
is finite. This definition yields the following results;
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Theorem 2.1. Let « € (0,1] and f,g be a—differentiable at a point t > 0.
Then

i. D*(af 4+ bg) = aD* (f) +bD" (g), for all a,b € R,

it. D* (X) = 0, for all constant functions f (t) = A,

ii. D* (fg) = fD* (9) + gD (f),

iv. D* (f) _ gb* (f);fDa (9)’

g g
v. D* (") = nt"~* for alln € R
vi. D*(fog)(t)=f'(g(t)) D*(g) (t) for [ is differentiable at g(t).

Definition 2.2 (Conformable fractional integral). Let oo € (0,1] and 0 < a < b.
A function f : [a,b] — R is a-fractional integrable on [a, b] if the integral

b b
/ f(z)dax = / f(x) 2> e
exists and is finite. All a-fractional integrable on [a, b] is indicated by L ([a, b])

Remark 2.3.
L f(x)

xl—a

IS (f) () = If (127 f) =

a

dx,

where the integral is the usual Riemann improper integral, and « € (0, 1].

We will also use the following important results, which can be derived from
the results above.

Lemma 2.4. Let the conformable differential operator D be given as in (2.1),
where o € (0,1] andt > 0, and assume the functions f and g are a-differentiable
as needed. Then

i. D*(Int) =t=* fort >0

ii. D1 f (t5)das| = F(1,0) + [} D* [ (1,9)] das

L. b
iii. [, f () D*(9) (x) daz = fgl; = [, g (x) D (f) (x) daz.
We can give the Holder’s inequality in conformable integral as follows:

Lemma 2.5. [19] Let f,g € C'la,b], p,q > 1 with % + % =1, then

1
q

/blf(z)g(fv)damé /blf(l’)lpdafv ; /blg(z)lqdal’

Remark 2.6. If we take p = ¢ = 2 in Lemma 2.5 , the we have the Cauchy-
Schwartz inequality for conformable integral.
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3. WEIGHTED OSTROWSKI TYPE INEQUALITY FOR CONFORMABLE
FRACTIONAL INTEGRAL

In this section, we introduce the weighted vesion of Montgomery identity
for comformable fractional integral. Then, we obtain the weighted Ostrowski
inequality with the aid of that identity.

Firstly, we define the mapping m(.,.) : [a, b]2 — R by

y
m(z,y) = /w(s)das <00, T,y € [a,b]
xr
where w : [a,b] — R is a non-negative function.

Now, we give a weighted Montgomery identity for conformable fractional

integrals as follow:

Lemma 3.1. Let w : [a,b] — R be non-negative and ay,by,a,b € R with
0<a<a <by <b a#b, andlet f: [a,b] = R be a—fractional differentiable
for a € (0,1]. Then for x € [a,b] we have the following generalized weighted
Montgomery identity for comformable fractional integrals

b

b
m(ahb1)f($)+m(bhb)f(b)+m(a7al)f(a)—/w(t)f(t)dat = /p(%‘,t)Da(f)(t)dat

a

(3.1)
where
m(ay,t), tE€[a,x]
p(l‘,t) =
m(by,t), te€ (x,b].

Proof. Using the integration by parts, we have
b

[ 0000t

b

/ m(ar, ) Do (F)(D)dat + / m(by, ) Da(f)(t)dat

x

T b

— (e HF) - / W(t)f(t)dat + m(by, ) ()] — / w(t) F(£)dat

a x

b
= m(al,w)f(w)—m(al,a)f(a)er(bhb)f(b)—m(bl,x)f(ff)—/w(t)f(t)dat

b
= m(an bi)f(a) + mla,an) (@) + m(bL O~ [ w(b)f(Odat



Some weighted integral inequalities for generalized conformable fractional calculus 199
which completes the proof. O

Corollary 3.2. Under assumption of Lemma 3.1 with a1 = a and by = b,
we have the following weighted Montgomry identity for conformable fractional
integrals

b b

m(a,b) f(x) — / w(t) £ (t)dat = / p(,8) Do () (£)dat. (3.2)

a a

Remark 3.3. In Corollary 3.2, if we choose w = 1, then we have the inequality

b

e [pe oD@t

which is given by Anderson in [2].

Theorem 3.4. Suppose that the assumptions of Lemma 3.1 are satisfied,
I Do)l = sup |Da(f)(z)| < 0o, then we have the following weighted Os-

z€la,b]
trowski inequality

b

m(ay,b1)f(x) +m(b1,b)f(b) +m(a,a1)f(a) — /w(t)f(t)dat (3-3)

a

| Do ()l oo 1wl oo
202

IN

(2% = af)? + (af — a*)? + (b — 2°) + (b° — 8)?].

Proof. Taking modulus in Lemma 3.1, we have

b
m(ax,b1)f(x) +m(b1,b) f(b) +m(a,a1)f(a) - /w(t)f(t)dat

x b
< / im(av, )] | Do (£)()] dat + / m(by, 1) [Da(f)(1)] dat
< 1Da(N) oo | [M//dsdt

1Dl oy 10 ,[M]/ /d s dat.

x
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Here, we get

x t xT
e — g
//das dot = / gt
[0
a o “ e — g%
_ /(al )dat—i—/( al)dat
Q (07
a ai
1 « a2 a2
= oo @ —a?)’ + (af —a*)?]
and similarly,
b t b b
o o
//dasdat = / L dut
(07
z  |by T

Il
7 N
>
=0
Q1
~
Q
~_
IS8
Q
~
_l’_
\C_
/N
~
Q
o
(S
)
~__
ISH
Q
~

Then, it follows that

b
m(ar, b1)f(z) + m(by, b)£(b) + m(a, ar) (a) — / w(t) f(£)dat

”Da(f)Hoo[a z| ||wHoo[a z] 2 2
< la, >la, a o« a o
< Lo (@ = af) + (af = a®)’]

1D ()l oo, zp) 19l
+ i[=,0]

2 (b —a) + (0 - b))

202
D
< Do W0llow oo a2 4 (0 — 2 4 a0 4 (07—
which completes the proof. (I

Corollary 3.5. Under assumption of Theorem 3.4 with a1 = a and by = b, we
have the following inequality

202

b
mla,)f(e) ~ [ w)f(Odat| < 1Da{Dlloc I1tlloe [y — gory2 1 (o — gory?]
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Remark 3.6. In Corollary 3.5, if we choose w = 1, then we have the inequality

||D()|| oc_ao¢2 a_xa2
o e f(ae = a4 0 - a0)

which is given by Anderson in [2].

Theorem 3.7. Suppose that the assumptions of Lemma 3.1 are satisfied, then
we have the inequality
b
m(az,b1) f(z) +m(by,b) f(b) + m(a,a1) f(a) — /w(t)f(t)dat

a

D.(f w
|<+(1M (27 = af)"™ o+ (@ = a?)PT 4 (0 — 2P (o — by
p P P

where ¢ > 1, 5+ E =1 and || Da(f)l|, is defined by

[ Dq( /|D ()] dat

Proof. Taking modulus in Lemma 3.1 and generalized Holder’s inequality (Lemma
2.5), we obtain

=

b
m(ay,b1) f(x) + m(by, b) f(b) +m(a, a1)f(a) - /w(t)f(t)dat

IN
\v
=
—
8
~
]
-
L
~

Q=

< | [0 dat / IDa( PO dat
x| t p bl t P %
= [ Da(Nl, //w(s)das dat—l—//w(s)das dt
S| |
z wip b . o ip
< DDl el | [|55E] dat+ [

=

D, w

1 (f)qu ||p+|1|p {(xa
(p+1)Pam

which completes the proof. O

—af)" (% = af)P T (O - 2P (0 - )
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Corollary 3.8. Under assumption of Theorem 3.4 with a1 = a and by = b, we
have the following inequality

b
Da w 1 1 %
m(a,b)f(x) — /w(t)f(t)dat < W (z — aa)p-i- + (b — xa)p+ .

Corollary 3.9. Particularly, chosing w = 1 in Corollary 3.8, we have the
inequality

1 ||Da(f)||q [(ma _ aa)p+1 (b — xa)p+1~| 1 |

b
f) = b —av a/f(t)dat = (p+ 1)% (b — a®)

4. WEIGHTED CEBYSEV TYPE INEQUALITY FOR CONFORMABLE
FRACTIONAL INTEGRAL

Now, in Section 4, we present the weighted Cebysev inequality for con-
formable fractional integral with the help of Montgomery identity which was
given in previous section.

Theorem 4.1. Let w : [a,b] — R be non-negative and let a,b € [0,00), and let
f,9:[a,b] = R be continuous functions with || Do (f)|, = sup [Da(f)(z)] <

00 and ||[Da(9)|l.. = sup |Da(g)(x)| < co. Then, for « EI?()T’;], we have the
following weighted C’:beyz,et) inequality
b
(T (f, g:w)| < HDa(f)||oo||D<;(g)Hoo /w(x) (H(2)) dot
m@o®

where weighted Cebysev functional for conformable fractional integral Ty (f, g; w)
is given by

b
To(figiw) = — / w(t) F(1)g(t)dat (4.1)

m(a,b)

and
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Proof. From Corollary 3.2, writing again the identity (3.2) for the functions
f(z) and g(x), we have

b b
1 1
@) = o / W) (Ot = s / P Da( Ot (42)
and
1 b 1 /
() = o / wt)g(t)dot = o / P DD et (43)
where

m(a,t), tE€ a,x]
p(z,t) =
m(b,t), te (z,b].

Multiplying the identities (4.2) and (4.3), we obtain

b b
o) - A [uwa0an - S0 [udae @

a, m(a,b)
1 / b
+m (/w(t)f(t)dat) (/w(t)g(t)dat)
1 ba \ b
- S (/p(m)Da(f)(t)dat) (/p(x7t)Da(g)(t)dat> .
After multiplying both sides of (4.4) by 7::’((;”2)) integrating from a to b, then we
obtain

S _

3

—

&

~

N—

]

Q

—

&

-~

N—

IS

Q

~
SN———

U

Q

8

b b
1
= [m(a,b)]3 a/w(l') (a/p(x’t)Da(f)(t)dat) (



204 H. Budak, F. Usta, M. Zeki Sarikaya

Taking the modulus in (4.5), we get
|To(f, g5 w)|

b
1
[m(a,b)] / (/ Ip(, )] [Da( (t)dat) (a/ |p(z,t)] Da(g)(tﬂdat) dox
1Da(N)llo 1Pa(9)l | : ’
@ ) a\9)
[m(a,b)]® a/ w(z) ( / Ip(x,t)dat) dox

b
WPl D0 f ) 10

IN

[m(a;b)]
(]

Corollary 4.2. Under assumption of Theorem 4.1 with w = 1, we have the
following Cebysev inequality

a g 2
(0 = o5 () IDa Dl 100 @)l

where

b
L(f.9) [ (16)
b

(ba -t / ) (ba iyaa /b w(t)g(t)dat) ,

Proof. For w =1, we have

and

b
/(t — )dat+/(b ! )dat
« «
(xa—aa)z—l—(ba—xa)Q
202

=
=
I
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Thn we have

which completes the proof. ([

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 are satisfied, then
we have the following weighted Cebysev inequality for conformable fractional
integral

b
1
Tur gl € g 1Pl / w(z) |g(2)| H(zx)doz

b
+||Da(9)oo/w(x)lf(w)lH(x)dax] :

a

Proof. Multiplying the identities (4.2) and (4.3) by w(z)g(z) and w(z)f(z)
respectively, then combining resulting identity, we establish

Integrating the inequality (4.7), we have

To(f, g;w)

b b
1
= S L/w(x)g(x) (a/p(x,t)Da(f)(t)dat) oz
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Then, it follows that

Ta(f, g5 w)]
b b
1
S S / wl@) lg(a) / @ O11Da(1)0)]dat | dos
b b
+ [w@ 7@ | [ b 0] 1Dale)(O]dat | dus
a 1 a ,
T LT / (@) |9(0)] H(2)do
b
HIDa@l [ wla) F(a)| Ho)daz
This completes the proof. (I

Corollary 4.4. Under assumption of Theorem 4.3 with w = 1, we have the
following Cebysev inequality
b b
@

2
a0 = 5 (s ) [IPaDle [ 190 H@ ot + [1Da(a) [ 170 oo

a a

5. WEIGHTED GRUSS TYPE INEQUALITY FOR CONFORMABLE FRACTIONAL
INTEGRAL

Finally, we provide the Griiss type inequality for conformable fractional
integral following similar steps in previous sections.

Theorem 5.1. Let w : [a,b] — R be non-negative function with a,b € [0,00),
and let f,g : [a,b] = R be a—fractional integrable functions with a € (0,1] and

my < f(z) < My, mg < g(x) < My for all x € [a,b].

Then we have the following weighted Griiss inequality

I To(f, g;w)| < = (My —my)(My — my) (5.1)

=

where Ty, (f, g;w) is given by (4.1).
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Proof. We have

b b
[ [ 5@ = 1) gta) - sto)) vy danday 5:2)
b b
=L//ummwwaﬂwww—ﬂwmm+f@w@mummw¢w@y

That is,

Ta(f. g3 w) (5.3)

b b
1
= Mm@wf!!uuwwwnmm—MMwmm@mﬂ%y

Appling Cauchy-Schwartz inequality (Remark 2.6), we obtain

2

b b

1

2 [m(a, b) a/a/[f(m)—f(y)] [g(m)—g(y)]w(x)w(y)daxday] (5.4)
1 b b
2
< 2 [m(a, b a/a/[f(:c)—f(y)] w(x)w(y)damday>
1 b b
X (Q[m(a b)]2 a/a/[g(l’)—g(y)] w(l’)w(y)dazday)
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It is easy to observe that

Since [My — f(z)] [f(x) — m1] > 0 for each x € [a,b], then we get

—
\Q_
~
—
=
\»@ =
=
\@
&
B
g
&
jSH
2
&
|
E
~—

Similarly, we have

b b
m/w(m)pﬂ(w)dax— ( (clt D /w(m)g(x)dax> (5.6)

a

b b
1 1
< (M2 - m(a,b)/w(x)g(x)dax) (m(a,b)a/w@)g(l’)dal‘—mz) .

Using (5.5) and (5.6) in (5.4), we get the following inequality

b b
2// g(y)]w(w)w(y)daxday]
b : ,
Mﬂ/w(l‘)f(x)dax> (m(a,b) /w(x)f(x)dax—ml>

b

b
1 1
X (Mg - Wa/w(z)g(x)dax) (m(a,b) /w(z)g(x)dame) .

a

2

IN

Now, using the elementary inequality for real numbers

1
(p+q)?, pgeR

< -
pq = 1
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we get
. b b 2
s [ [ @) = 1) la(@) - 9] wla)uls)dasday
2[m(a,d)]
a a
< 16(M1 m1)?(Ms —mg)*
which completes the proof. To prove the sharpness of (5.1), let choose
1
-1, a<z< (#) «
w(z) =1and f(z) =g(z) =
1
L, ()" <z <,
then we have
b b
o [ w@s@f@dar = 1 [ o) f(a)dar =1
) w(@)g(@)f(z)dar = o2 [ (@) f(2)der =1,
b b
[ w@)f@das = [w@)g(@rds =0
a a
and
leml :M27m2:2
which the equality (5.1) is realized. d

Remark 5.2. Under assumption of Theorem 5.1 with w = 1, we have the fol-
lowing Griiss inequality

‘Ta (f7 g)‘ S
which is given by Anderson in [2].

(My —mq) (M — m2)

=] =

Theorem 5.3. Let w : [a,b] = R be non-negative function with a,b € [0, 00),
and let f,g : [a,b] = R be a—fractional differantiable functions on (a,b) with
€ (0,1]. Then we have the following inequalties

I To(f, g;w)] (5.7)

3=

b b
< //wxw /|D (O dut| doxday
a a
1
b b q
//w(m)w(y /|D 8)|1 dos| dozdyy
bob
||D( || ||D — z*
w(x)w daxday
a
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wherep>1and]%+é:1.

Proof. Using the Hoélder inequality, we have

//‘D (9)(s)| datdys (5.58)
< //\D )P dotdys //|D ()| dtdes
) #;/‘D B dat /\D ()1 das
- |pd t |qd S
On the other hand, from (5.3) and (5.8), we have
T (f, g5 w)|
) b b
- 2[m<a,b>12a/ / 17@) = 7)l6(=) = s}l wlzhly)datdey
1 bb y oy
= sy [ | | 19000000 s

1

1
q

b b Y 3
1 y* —a® / P / )|
< - w(x)w D, )" dat D, dos| dexdyy.
s | o || 1o Dalo)(s)
Applying again Holder inequality, we obtain
|Ta(f, g5 0)]
< ax /| ()|F dut /|D |qu doxdyy

IN

U)

j;w
s (/-

()7 daot daa:day)

doxdyy

Q=

x (//w<x>w<y /\D ()1 dus

which completes the proof of the first inequality in (5.7).
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Using the facts that

/|D O dat| < [Da(P)IE and /\D )($)|7 dus| < | Da(g)]

we can easily obtain the the proof of the second inequality in (5.7). O

Corollary 5.4. Under assumption of Theorem 5.8 with w = 1, we have the
following inequalities

IT(f,9)|
< L _«a /|D ()P dot| dod 1’
< 3 bo‘— o allal)
X /|D (s)|* dos| dordny
< et D D
< Tll a(Nl, [1Da(9)ll,

6. CONCLUDING REMARK

The purpose of the current study was to make a generalization of some
integral inequalities with the help of Katugampola conformable fractional in-
tegrals. The results of this research show parallelism with the previous studies.
A further study could be assess by using the two independent variables.
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